FACT SHEET

4-chloromethamphetamine (4-CMA)

September 2015

For more information, please contact:
Dr. P. Blanckaert
Coordinator Belgian Early Warning System Drugs
Scientific Institute of Public Health
National Focal Point on Drugs
Jyliette Wytsmanstraat 14
B-1050 Brussels, Belgium
Tel: 02/642 5408
ews.drugs@wiv-isp.be
The information in this message is exclusively meant for the EWS-network, and was sent to you, as a member of this network, in a confidential way. Therefore the information in this message may not be copied, transferred or made public without the prior permission of the WIV-ISP. The WIV-ISP takes responsibility for the editing of a press release, if considered as necessary in the framework of its mission.

The information contained in this document is also available on the BEWSD-website (with corresponding pdf-files and analytical data). This part of the website is not accessible for the general public. A login can be requested by contacting ews.drugs@wiv-isp.be.
A. General information

Recent seized sample in Belgium

Substance: 4-chloromethamphetamine
Date of collection: July 2015
Date of analysis: August 2015
Product type: tablet
Colour: Yellow/brown
Region: Antwerpen

Type
Psychotropic substances

Group
Phenethylamines

Name
4-chloromethamphetamine

Nature of substance
4-Chloromethamphetamine (CMA) is a stimulant derivative of amphetamine, that was investigated in the past as an antidepressant. Compared to methamphetamine, noradrenergic effects are less pronounced, and CMA demonstrates considerable influence on serotonin neurotransmission. It has also been established that CMA is a serotonergic neurotoxin.

It is metabolized in vivo to 4-chloro-amphetamine, which is also a known neurotoxic compound.

Other names
4-CMA; p-CMA; CMA

B. Alerts

Alerts
Belgium, September 2015

The BEWSD was informed by Eurofins NV about the analysis of an ecstasy tablet containing chloromethamphetamine. After extensive further analysis (a.o. NMR was necessary), the substance was positively identified as 4-chloromethamphetamine.

The tablet was a brown/yellow rectangle, with imprint/logo “Durex” (photos available further in this document). Tablet characteristics: 430mg weight, dimensions 12.5 x 8.4mm, thickness 3.8mm.

Reports to EMCDDA
No reports, this is the first time this substance is reported.
CMA was found to be a potent and long-lasting depleter of brain serotonin. It has been compared to methamphetamine in normal subjects, and was evaluated clinically as an antidepressant(Kits and van Praag 365-73; van Praag et al. 66-76; van et al. 313-15).

Typical dosages used were 60-90mg daily, divided into three doses. No major physiological side effects were noted.

Later, it was discovered that CMA was a neurotoxic substance, specifically acting at the serotonergic neurotransmission system(Sanders-Bush, Bushing, and Sulser 33-41). Hence, clinical research in humans was halted.

C. Pictures

D. Clinical information

Usage

Subjective effects in man:
Very little information regarding this substance is available.

In the absence of empirical experimental clinical evidence, prof. David Nichols would predict 4-chloromethamphetamine to be a stimulant/hyperthermic agent with a psychopharmacology similar to MDMA, but more potent, and also more neurotoxic. CMA might have a longer duration of action compared to MDMA (which lasts 4-5 hours), because it is less susceptible to metabolism. Acute toxicity of this compound (hyperthermia, dehydration, etc.) was the first concern of dr. Nichols(Nichols 1-3).

The (desired) effects of amphetamines and MDMA have been well described in literature. Psychoactive effects of CMA and 4-CA were evaluated in humans while researching both compounds as antidepressants. In the dosages used (80-90mg daily, in 3 doses), no significant acute psychoactivity was noticed; side effects were also low, although an effect on sleep and nausea was mentioned(van Praag et al. 66-76).

Summarizing the receptor actions of CMA, we estimate that clinical effects of CMA will be a combined result of motor activating effects mediated by NA potentiation, and mood-improving effects caused largely by 5-HT potentiation. In practice, these include the typical amphetamine effects (e.g. increased energy and stimulation, euphoria), and feelings of wellbeing and possibly empathogenic effects comparable to those of MDMA, attributable to the serotonergic properties of CMA(van Praag et al. 66-76). Based on rodent data, it is believed that CMA will be more potent than MDMA and will likely have a longer duration of action, with a psychopharmacology that would be similar to MDMA(Nichols 1-3).
Of course effects will be dose-dependent. More information is available in the section “Dosage”.

Dosage:

Regarding potency in humans, very few data, if any, are available. However, data for the N-demethylated derivative 4-CA do exist. For example, Johnson et al found in a MDMA-trained rat drug discrimination study that the ED50 of 4-CA was 0.17 mg/kg, whereas the ED50 of MDMA was 0.78 mg/kg (Johnson et al. 1-10). Thus, from these *in vivo* rat data, one might expect 4-CA to have about four times the potency of MDMA.

Also, in a study performed in 1995 it was demonstrated that 4-CA is a more potent 5-HT uptake inhibitor than amphetamine or 4-fluoroamphetamine, although less potent at dopamine and norepinephrine reuptake sites (Marona-Lewicka et al. 105-13). The N-methyl derivative of 4-CA, CMA, will be more lipophilic and hence, more likely to penetrate the blood-brain barrier and potentially more potent *in vivo* than 4-CA itself (Nichols 1-3).

Table 3. Potencies of halogenated amphetamines at different neurotransmitter systems. Adapted from (Marona-Lewicka et al. 105-13).

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (nM) to inhibit monoamine uptake</th>
<th>Ratio of 1/IC50 values</th>
<th>Norepinephrine uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[3H]HT</td>
<td>[3H]Dopamine</td>
<td>[3H]Norepinephrine</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>3769 ± 356</td>
<td>172 ± 23</td>
<td>148 ± 16</td>
</tr>
<tr>
<td>p-Fluoroamphetamine</td>
<td>2352 ± 290</td>
<td>270 ± 33</td>
<td>356 ± 15</td>
</tr>
<tr>
<td>p-Chloroamphetamine</td>
<td>187 ± 25</td>
<td>551 ± 73</td>
<td>257 ± 8</td>
</tr>
<tr>
<td>p-Iodoamphetamine</td>
<td>46 ± 3</td>
<td>1955 ± 135</td>
<td>690 ± 7</td>
</tr>
<tr>
<td>(+)-MDDB</td>
<td>784 ab</td>
<td>7825 ab</td>
<td>1233 ab</td>
</tr>
<tr>
<td>MMAI</td>
<td>212 ab</td>
<td>19795 ab</td>
<td>11618 ab</td>
</tr>
</tbody>
</table>

The IC50 values represent the means ± S.E.M. of three separate experiments. Each experiment utilized five concentrations, run in triplicate. The IC50 values were determined from the linear portion of graded dose-response curves, according to the procedure of Tallarida and Murray (1981). * Significantly different from (+)-amphetamine IC50 (P < 0.001, Student's *t*-test). † Taken from reference Nichols et al. (1991).

Dosages used in lab animals were 1-2mg/kg. Human clinical dosages of CMA used during the research as an antidepressant in the 1970’s amounted to 80mg daily (divided into three doses), comparable to what was found in the CMA tablet in Belgium (van Praag et al. 145-60).

It is important to realize that the dosage used in clinical studies (~80mg daily) was administered divided into 3 doses. So each dose consisted of 25-30mg of CMA. No studies were found where higher dosages were administered to humans.

Health risks

A thorough discussion is outside of the scope of this document. However, it is clear that the health risks for this substance include an acute, and a later “stadium”
Acute health risks are comparable to those observed with MDMA, PMMA and 4-MA, and are mainly due to serotonin release, combined with stimulation. Severe hyperthermia is a possibility, possibly resulting from an induced serotonin syndrome.

On top of these acute effects, there is the demonstrated neurotoxicity of CMA, which results in permanent brain damage from destruction of serotonergic neurons. At the moment, it is unknown what clinical results will be observed due to the neurotoxicity of this compound in humans. Long-term damage could, for example, include chronic depression. Time of manifestation of these symptoms is unknown. Treatment of overdoses is symptomatic.

E. Legal status

Uncontrolled

F. Chemistry

Systematic chemical name
[1-(4-chlorophenyl)propan-2-yl](methyl)amine; 4-chloro-N,α-dimethyl-benzeneethanamine

Other chemical names and variants
4-chloromethamphetamine, p-CMA, 4-CMA, CMA

Chemical Abstracts Service (CAS) registry number
1199-85-5 (base); 30572-91-9 (HCl salt)

Molecular information

Molecular structure:

![Molecular structure of CMA]

Molecular formula: \(\text{C}_{10}\text{H}_{14}\text{ClN} \)

Molecular weight: 183.68

Exact mass: 183.0814772

Identification and analytical profile can be found at the end of this document. Analytical spectra were kindly provided by the University of Ghent (prof. dr. Van Calenbergh) and Eurofins Forensics Brugge (dr. apr. Cordonnier).
G. References

Library Searched: C:\DATABASE\SWGDRJG.L
Quality: 52
If: 4-Chloromethamphetamine

Scan 1180 (10.950 min): 816H15-G.D

#2064: 4-Chloromethamphetamine
UV spectra by Eurofins Forensics
Dr. J. Cordonnier
Brugge, Belgium

Scan Rate: 10,000 Hz Bunch: 4 Data Rate: 2,500 Hz
Detector Range: 220.000->367.000 nm Valid Range: 220.000->367.000 nm
Spectrum Type: Within Correction Type: Baseline

Within at 10.240 min PuP = 223.10 nm

nm mAU nm mAU nm mAU nm mAU nm mAU nm mAU

220.00 361.13 221.00 359.35 222.00 351.49 223.00 335.68 224.00 312.36 225.00 276.80
226.00 232.24 227.00 184.05 228.00 137.01 229.00 97.325 230.00 66.320 231.00 43.961
232.00 29.655 233.00 20.049 234.00 14.082 235.00 10.390 236.00 7.9720 237.00 6.4397
238.00 5.3927 239.00 4.8044 240.00 4.3368 241.00 4.0921 242.00 3.9278 243.00 3.9147
244.00 4.0222 245.00 4.1783 246.00 4.4805 247.00 4.6639 248.00 4.9460 249.00 5.2165
250.00 5.9304 251.00 5.9859 252.00 6.3979 253.00 6.7425 254.00 7.0923 255.00 7.3714
256.00 7.6926 257.00 8.1676 258.00 8.6075 259.00 8.9787 260.00 9.2929 261.00 9.4842
262.00 9.7504 263.00 10.028 264.00 10.310 265.00 10.607 266.00 10.703 267.00 10.606
268.00 10.244 269.00 9.6436 270.00 8.9925 271.00 8.4466 272.00 8.0642 273.00 7.8484
274.00 7.6570 275.00 7.2075 276.00 6.5070 277.00 5.4405 278.00 4.2393 279.00 3.1105
280.00 2.2244 281.00 1.6164 282.00 1.2329 283.00 0.9931 284.00 0.8029 285.00 0.7363
286.00 0.6886 287.00 0.6311 288.00 0.6124 289.00 0.5093 290.00 0.4343 291.00 0.4005
292.00 0.3938 293.00 0.3134 294.00 0.2364 295.00 0.2534 296.00 0.3096 297.00 0.3771
298.00 0.3829 299.00 0.3590 300.00 0.2740 301.00 0.2101 302.00 0.2137 303.00 0.1819
304.00 0.2062 305.00 0.1779 306.00 0.1487 307.00 0.1116 308.00 0.0965 309.00 0.1528
310.00 0.1747 311.00 0.1901 312.00 0.1418 313.00 0.0706 314.00 0.0132 315.00 0.0235
316.00 0.0597 317.00 0.1016 318.00 0.1454 319.00 0.1544 320.00 0.1281 321.00 0.1586
322.00 0.1346 323.00 0.1178 324.00 0.1315 325.00 0.0929 326.00 0.1492 327.00 0.1847
328.00 0.1967 329.00 0.1696 330.00 0.1374 331.00 0.1182 332.00 0.1926 333.00 0.2691
334.00 0.3286 335.00 0.3512 336.00 0.2594 337.00 0.2414 338.00 0.1663 339.00 0.1520
340.00 0.1902 341.00 0.1942 342.00 0.2219 343.00 0.2960 344.00 0.2978 345.00 0.2789
346.00 0.2597 347.00 0.2285 348.00 0.1833 349.00 0.1855 350.00 0.1304 351.00 0.1022
352.00 0.1310 353.00 0.1625 354.00 0.2299 355.00 0.2212 356.00 0.1720 357.00 0.1058
358.00 0.0827 359.00 0.1198 360.00 0.1167 361.00 0.1339 362.00 0.1491 363.00 0.1190
364.00 0.1401 365.00 0.1486 366.00 0.1509 367.00 0.2011
chloroamphetamine extracted from tablet

Sample Name: C1Amf
Data Collected on: linux300-mercury300
Archive directory: /home/data/Martijn
Sample directory: C1Amf
File: C1Amf_PROTON_28Aug2015_01

Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: Aug 28 2015

Temp. 25.0 °C / 298.1 K
Operator: Martijn

Relax. delay 2.000 sec
Pulse 45.0 degrees
Acq. time 3.000 sec
Width 4798.5 Hz
32 repetitions
OBSERVE H1 300.0100342 MHz
DATA PROCESSING
PT size 131072
Total time 3 min 25 sec

ppm
8 7 6 5 4 3 2 1
1.89 1.94 2.07 3.00 1.07 1.23 3.00